Existence of Solutions for Nonconvex Second-order Differential Inclusions in the Infinite Dimensional Space

نویسندگان

  • TAHAR HADDAD
  • MUSTAPHA YAROU
چکیده

We prove the existence of solutions to the differential inclusion ẍ(t) ∈ F (x(t), ẋ(t)) + f(t, x(t), ẋ(t)), x(0) = x0, ẋ(0) = y0, where f is a Carathéodory function and F with nonconvex values in a Hilbert space such that F (x, y) ⊂ γ(∂g(y)), with g a regular locally Lipschitz function and γ a linear operator.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic differential inclusions of semimonotone type in Hilbert spaces

In this paper, we study the existence of generalized solutions for the infinite dimensional nonlinear stochastic differential inclusions $dx(t) in F(t,x(t))dt +G(t,x(t))dW_t$ in which the multifunction $F$ is semimonotone and hemicontinuous and the operator-valued multifunction $G$ satisfies a Lipschitz condition. We define the It^{o} stochastic integral of operator set-valued stochastic pr...

متن کامل

Existence Results for First and Second Order Nonconvex Sweeping Processes with Perturbations and with Delay: Fixed Point Approach

We are interested in existence results for nonconvex functional differential inclusions. First, we prove an existence result, in separable Hilbert spaces, for first order nonconvex sweeping processes with perturbation and with delay. Then, by using this result and a fixed point theorem we prove an existence result for second order nonconvex sweeping processes with perturbation and with delay of...

متن کامل

Lipschitz-continuity of the Solution Map of Some Nonconvex Second-order Differential Inclusions

We prove the Lipschitz dependence on the initial condition of the solution set of a nonconvex second-order differential inclusions by applying the contraction principle in the space of selections of the multifunction instead of the space of solutions.

متن کامل

Viable Solutions for Second Order Nonconvex Functional Differential Inclusions

We prove the existence of viable solutions for an autonomous second-order functional differential inclusions in the case when the multifunction that define the inclusion is upper semicontinuous compact valued and contained in the subdifferential of a proper lower semicontinuous convex function.

متن کامل

Nonconvex Differential Inclusions with Nonlinear Monotone Boundary Conditions

Existence results for problems with monotone nonlinear boundary conditions obtained in the previous publications by the author for functional differential equations are transferred to the case of nonconvex differential inclusions with the help of the selection theorem due to A. Bressan and G. Colombo. The existence of solutions of boundary value problems for differential inclusions with possibl...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006